Roles of a solo LuxR in the biological control agent Lysobacter enzymogenes strain OH11.

نویسندگان

  • Guoliang Qian
  • Feifei Xu
  • Vittorio Venturi
  • Liangcheng Du
  • Fengquan Liu
چکیده

Lysobacter enzymogenes is a ubiquitous plant-associated and environmentally friendly bacterium emerging as a novel biological control agent of plant disease. This bacterium produces diverse antifungal factors, such as lytic enzymes and a secondary metabolite (heat-stable antifungal factor [HSAF]) having antifungal activity with a novel structure and mode of action. The regulatory mechanisms for biosynthesis of antifungal factors is largely unknown in L. enzymogenes. The solo LuxR proteins have been shown to be widespread, playing important roles in plant-associated bacteria. Here, we cloned and studied a solo LuxR protein, LesR, from L. enzymogenes strain OH11. Overexpression but not deletion of lesR significantly impaired HSAF biosynthesis levels and antimicrobial activities but did not show visible effect on production of major lytic enzymes. Overexpression of lesR also led to remarkably accelerated cell aggregation and induced production of a melanin-like pigment in L. enzymogenes; these two phenotypes are mediated by the diffusible factor cell-to-cell signaling system of L. enzymogenes. The C-terminus helix-turn-helix domain was shown to be critical for several lesR-controlled functions. Overall, our study provides the first example of the roles and mechanisms of a solo LuxR protein in a plant-associated L. enzymogenes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LesR is a novel upstream regulator that controls downstream Clp expression to modulate antibiotic HSAF biosynthesis and cell aggregation in Lysobacter enzymogenes OH11

BACKGROUND Heat-stable antifungal factor (HSAF) is a polycyclic tetramate macrolactam secondary metabolite that exhibits broad-spectrum inhibitory activities against filamentous fungal pathogens. The native yield of this chemical is low. It is also a great challenge to synthesize HSAF artificially, due to its complex structure. Understanding the regulatory mechanism underlying HSAF biosynthesis...

متن کامل

Transcriptional and Antagonistic Responses of Biocontrol Strain Lysobacter enzymogenes OH11 to the Plant Pathogenic Oomycete Pythium aphanidermatum

Lysobacter enzymogenes is a ubiquitous, beneficial, plant-associated bacterium emerging as a novel biological control agent. It has the potential to become a new source of antimicrobial secondary metabolites such as the Heat-Stable Antifungal Factor (HSAF), which is a broad-spectrum antimycotic with a novel mode of action. However, very little information about how L. enzymogenes detects and re...

متن کامل

A TonB-dependent receptor regulates antifungal HSAF biosynthesis in Lysobacter

Lysobacter species are Gram-negative bacteria that are emerging as new sources of antibiotics, including HSAF (Heat Stable Antifungal Factor), which was identified from L. enzymogenes with a new mode of action. LesR, a LuxR solo, was recently shown to regulate the HSAF biosynthesis via an unidentified mechanism in L. enzymogenes OH11. Here, we used a comparative proteomic approach to identify t...

متن کامل

Involvement of both PKS and NRPS in antibacterial activity in Lysobacter enzymogenes OH11.

Polyketides and nonribosomal peptides represent two large families of natural products (NPs) with diverse structures and important functions. They are synthesized by polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS), respectively. Lysobacter enzymogenes is emerging as a novel biocontrol agent against pathogens of crop plants and a new source of bioactive NPs, such as antibact...

متن کامل

Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11

Lysobacter enzymogenes is an important biocontrol agent with the ability to produce a variety of lytic enzymes and novel antibiotics. Little is known about their regulatory mechanisms. Understanding these will be helpful for improving biocontrol of crop diseases and potential medical application. In the present study, we generated an hfq (encoding a putative ribonucleic acid chaperone) deletion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Phytopathology

دوره 104 3  شماره 

صفحات  -

تاریخ انتشار 2014